
ORMs: Strengths, Weaknesses, and
Building a PostgreSQL-specific ORM

Jonathan S. Katz
November 7, 2009 - PGDay.eu

Outline

• Overview & Dirty Work

• The “ORM Patterns”

• Seriously, Why?

• Dissecting & Discussing ORM Features

• Peeking at some code

• Scalability & the PgSQL ORM

Nota Bene

• I like working with SQL

• ORMs are another tool for solving
problems, not necessarily the tool

Overview:
We’re Jumping In

• Let’s build an address book!

Requirements

• Multi-user

• Store first name, last name, location

• Searchable / Sortable by location

• (Pretend this is a web app)

Example 1:
Naïvely We Commence

Notes:

• Had to handle “SQL semantics” every-time

• Reusable? (or too contrived)

• Ruby “Hash” objects: no errors if no value
for a key

• Also, isn’t Ruby object-oriented?

Try #2: Make it
“Developer Friendly”

• Make it geared towards my development
language (in this case Ruby)

• Use Ruby to encapsulate SQL

We Try Again

Notes

• More code to setup, but less to accomplish
our tasks

• Reading / Writing data much more familiar
to developer

Eureka!

• We made a simple object-relational
mapper!

• Made our DB interactions more
programmatic

• We could continue using this, but imagine if
our domain were something like...

Formality Sake

• Object-relational mapping (ORM) - a
programming technique for converting data
between incompatible type systems in
relational databases and object-oriented
programming languages.
(Source: http://en.wikipedia.org/wiki/Object-relational_mapping)

Examples:
• Ruby:

• ActiveRecord (http://www.rubyonrails.org)

• DataMapper (http://datamapper.org/)

• Sequel (http://sequel.rubyforge.org/)

• Python

• SQLAlchemy (http://www.sqlalchemy.org)

• PHP

• Propel (http://propel.phpdb.org)

• Doctrine (http://www.doctrine-project.org/)

http://www.doctrine-project.org
http://www.doctrine-project.org

Two Notable Patterns

• Courtesy of and many thanks to Martin
Fowler for the contents on the next two
slides

• Source: “Patterns of Enterprise Application
Architecture” (http://martinfowler.com/
books.html#eaa)

http://martinfowler.com/books.html#
http://martinfowler.com/books.html#
http://martinfowler.com/books.html#
http://martinfowler.com/books.html#

Active Record

• “An object that wraps a row in a database table or view, encapsulates
the database access, and adds domain logic on that data.”

Source: http://www.martinfowler.com/eaaCatalog/activeRecord.html

http://www.martinfowler.com/eaaCatalog/activeRecord.html
http://www.martinfowler.com/eaaCatalog/activeRecord.html

Data Mapper
• “A layer of mappers that moves data between objects and a

database while keeping them independent of each other and the
mapper itself.”

Source: http://martinfowler.com/eaaCatalog/dataMapper.html

http://martinfowler.com/eaaCatalog/dataMapper.html
http://martinfowler.com/eaaCatalog/dataMapper.html

A Quick Interjection

• Why not combine parts of both?

• We will look at:

• ActiveRecord (eponymous)

• SQLAlchemy (data mapper)

So, Why?

• Abstraction: Take SQL out of daily
development (gasp!)

• Portability

• Development Speed

• Relationship management, or managing
relations

• Expressibility via API

• Features!

SQL: like ASM for a developer talking to
databases - nice to have it abstracted out

portability: can use with postgresql, mysql,
mssql, oracle -- but still keep the same
application code

development speed: abstracted a lot, less
code to write; familiarity with an OSS ORM
allows for quick turnaround on new projects

Immediate Drawbacks

• Yet another layer of code

• Surrender some control

• Can be learning another language

Design, Design, Design

• ORMs are no panacea: still need good
software design

• API level

• Developer level

ActiveRecord

• Core part of “Ruby on Rails”

• (Being overhauled for Rails 3)

• MVC = Model-View-Controller

• Let’s look at some code, then talk details
Example 3!

Interface Notes

• create, save vs. create!, save!

• true/false vs. Ruby exception --
consistency?

Validations

• can test constraints before committing
record to database

• can add custom validations if ActiveRecord
does not provide one that fits

• returns a special “Error” object that can be
parsed if there are failures (fun)

Callbacks

• Trigger methods to run before, after
initialize / create / save / update

• Useful for forcing data mutation or running
special command

Named Scopes

• Way of writing “programmatic SQL”

• In ActiveRecord, does not load data
immediately

• Contact.begins_with(‘s’).visible.scoped(:con
ditions => { :created_at => Date.today })

• Note: if I used “ILIKE” suddenly code is not
portable(!) - not “developer-proof”

Which Reminds Me...

• Notice how ActiveRecord was smart
enough to format the data types correctly?

• ActiveRecord also takes care of quoting
and avoiding SQL injections *if used
properly*

• User.all(:conditions => “name = #{name}”)

• User.all(:conditions => { :name => name})

Associations

• has_many :blahs

• has_one :blah

• belongs_to :blah

• has_and_belongs_to_many :blahs

• (and many options for configuring these,
e.g. :dependent => :destroy)

Single-Table Inheritance

• class Friend < Contact

• belongs_to :user

• end

• ActiveRecord smart enough to reify
appropriate class when User#contacts is
called

• Note: Not using PgSQL’s built-in
inheritance mechanism!

Serialization

• Take a Ruby data type, store it, load it when
record is reloaded

• serialize :data, MyOwnClass

Transactions / Locking

• Supports PostgreSQL transactions (fakes it
for some other databases)

• Can use locking for business logic purposes

• Occurs at application level

• Optimistic vs. Pessimistic

example #5

Managing the Schema:
Migrations

• Not part of the “ORM” per se, but worth a
mention

• Helps keep track of “state” of the database
and reproduce / tear down as needed

example 7

This sound too good...

• You’re right!

• Well, you’re also wrong. But you’re partially
right, there are some issues.

How is the SQL
generated?

• In ActiveRecord: all over the place

• Since can use multiple database adapters,
does include database-specific SQL

• Examples for PostgreSQL

More on ActiveRecord
SQL

• Sometimes, ORM cannot do it all, e.g. a
complex sort

• Model.find_by_sql

• Lose out on “Scope” features when using
this method, e.g. fast pagination example 8

Other “Missing
Features”

• Cursors: ActiveRecord either loads everything,
nothing, or in X batches

• Datatypes and Modules: e.g. XML, hstore

• Uniqueness / Constraint Errors: Treated as “SQL
Error

• Functional indexes

• Inheritance / Partitions

• Functions (a lot of them)

• Prepare / Execute ?

Shifting Gears:
SQLAlchemy

• uses “data mapper” pattern

• separates SQL generation from actual
objects

• I will give more of an overview due to less-
familiarity with Python / SQLAlchemy

• Source: http://www.sqlalchemy.org/docs/05/
ormtutorial.html

http://www.sqlalchemy.org/docs/05/ormtutorial.html
http://www.sqlalchemy.org/docs/05/ormtutorial.html
http://www.sqlalchemy.org/docs/05/ormtutorial.html
http://www.sqlalchemy.org/docs/05/ormtutorial.html

Noteworthy Points

• Separates SQL generation from mapper
itself (sounds familiar?)

• SQL generation: “not necessarily clean, but
programmatic”

Introducing
“Postgresina”

• So pre-alpha it’s Ω

• Main idea: build on ORM towards specific
PostgreSQL features

Ideas

• Prepare / Execute - implicitly (hard) and
explicitly (easy[-ier])

• Inheritance - table-wise vs. string-column /
index and compare performance
differences

• Easier to access different data-types /
methods

• Loading into memory: when it’s time.

Starting-Points

• SQL-generator:

• Must have solid API

• Must be accessible to developer Idea: want to be
programmatic

Scalability

• Want to remain programmatic and scale

• Be able to maintain roles for both
developer + DBA

Conclusions

• ORMs can help developers start-off quickly

• Issues with scalability + taking advantage of
PostgreSQL features

• Should be possible to extend ORM
functionality, but will not completely
remove the need for SQL

Questions?

• Now

• jonathan.katz@excoventures.com

• jkatz05@gmail.com

• Twitter: jkatz05

• github.com/jkatz/postgresina

mailto:jonathan.katz@excoventures.com
mailto:jonathan.katz@excoventures.com
mailto:jkatz05@gmail.com
mailto:jkatz05@gmail.com

