ORMs: Strengths, Weaknesses, and
Building a PostgreSQL-specific ORM

Jonathan S. Katz

Qutline

® Overview & Dirty Work
® The “ORM Patterns”
® Seriously, Why?

Nota Bene

® | like working with SQL

Overview:
We're lumping In

Requirements

® Multi-user

® Store first name, last name, location

Example I:
Naively We Commence

Notes:

® Had to handle “SQL semantics” every-time

® Reusable! (or too contrived)

¢¢ I

Try #2: Make it
“Developer Friendly”

® Make it geared towards my development
language (in this case Ruby)

We Try Again

Notes

® More code to setup, but less to accomplish
our tasks

FEureka!

® VWe made a simple object-relational
mapper!

® Made our DB interactions more

o o Wallet StampTransaction
3k Card TransactionStructure

name
i credits xml_template name
token description

inactive
new_stamps envelope_liners
accepled_los \ options percentage
EmailAddress custom min_fee_cents
file_name max_fee_cents
Token EnvelopeLinerTransaction e,
CreditCard email_address peLi image_content_type currency
scope_type primary _image _file_size
number token confirmed credits image_updated_at
primary expires_at verification_sent_at
invalid follow_up_sent_at
card_type
expiration_year
expiration n‘:::xh Permission Event 50020 type
ends_with ata
1
name hosl!
, time
MediaEntry e time_zone EmailAddressDocument
state
name password_digest options sooggmwoe
salt_format ticketed
i last_viewed_stats_at
removed

inactive
invite_si # PaymentGroup

MegiaFile

mime
dgest
version
size
MerchantAccount

options
Key

Guest

state
additional_guests

Contact

scope_type
first_name
StampProduct last_name
name titie sent_from_host_email_address
email_address trash
Srone time_zone removed_from_postbox
currency s
credits credits pone.
period cescription
penod addressi

i i iti address2
image_path image_path ? WaitingList S
order order mcw roup

available avallable i prov
state “
quantity

unremgvable unremovable ” zip
country v

Purchase

payment_status
reference
"3:: Ticket subtotal_cents
c::ency i name guest_transaction_fee_cents
credits is amount_available total_transaction_fee_cents
permissions period description currency
period sales_end_at
description price_includes_transaction_fee
image_path cents
order currency
tax_deductible_value_cents
—— S —"
Reservation

available
unremovable
———————————
reserved 05]&1 type

Formality Sake

® Obiject-relational mapping (ORM) - a
programming technique for converting data
between incompatible type systems in
relational databases and object-oriented

Examples:

® Ruby:
® ActiveRecord (http://www.rubyonrails.org)
® DataMapper (http://datamapper.org/)
® Sequel (http://sequel.rubyforge.org/)

® Python

http://www.doctrine-project.org
http://www.doctrine-project.org

Two Notable Patterns

® Courtesy of and many thanks to Martin
Fowler for the contents on the next two
slides

http://martinfowler.com/books.html#
http://martinfowler.com/books.html#
http://martinfowler.com/books.html#
http://martinfowler.com/books.html#

Active Record

€6
® " Anobject that wraps a row in a database table or view, encapsulates
the database access, and adds domain logic on that data.”

Person

lastName

firstName
numberQfDependents
insert

update

getExemption
isFlaggedForAudit
getTaxableEarnings

http://www.martinfowler.com/eaaCatalog/activeRecord.html
http://www.martinfowler.com/eaaCatalog/activeRecord.html

Data Mapper

® “A layer of mappers that moves data between objects and a
database while keeping them independent of each other and the

mapper itself.”

Person

lastName Person Mapper
firstName
numberOfDependents insert
getExemption update
isFlaggedForAudit delete
getTaxableEarnings

http://martinfowler.com/eaaCatalog/dataMapper.html
http://martinfowler.com/eaaCatalog/dataMapper.html

A Quick Interjection

® VWhy not combine parts of both?

® \We will look at:

S0, Why!?

® Abstraction: Take SQL out of dailv

8QL: like ASM for a developer talking to

d cve I @) P me nt (gaS P !) databases - nice to have it abstracted out

portability: can use with postgresql, mysql,
mssql, oracle -- but still keep the same

® PO I’ta b | I |t)’ application code

development speed: abstracted a lot, less
code to write; familiarity with an 0SS ORM

o D eve I obme nt S Dee d allows for quick turnaround on new projects

Immediate Drawbacks

® Yet another layer of code

® Surrender some control

Design, Design, Design

® ORMs are no panacea: still need good
software design

ActiveRecord

® Core part of “Ruby on Rails”

® (Being overhauled for Rails 3)

Example 3!

Interface Notes

® create, save Vs. create!, save!

Validations

® can test constraints before committing
record to database

® can add custom validations if ActiveRecord

Callbacks

® Trigger methods to run before, after
initialize / create / save / update

Named Scopes

® Way of writing “programmatic SQL”

® |n ActiveRecord, does not load data
immediately

® Contact.begins with(‘s’).visible.scoped(:con

I I
o Y & — a e Py o~ el a =Y o le

Which Reminds Me...

® Notice how ActiveRecord was smart
enough to format the data types correctly!?

® ActiveRecord also takes care of quoting
and avoiding SQL injections *if used
properly™

Associations

® has_many :blahs
® has one :blah

® belongs to :blah

Single-Table Inheritance

® class Friend < Contact
® belongs to :user
® end

- ® ActiveRecord smart enough to reify

Serialization

® Take a Ruby data type, store it, load it when

Transactions / Locking

® Supports PostgreSQL transactions (fakes it
for some other databases)

® Can use locking for business logic purposes

example #9

Managing the Schema:
Migrations

® Not part of the “ORM” per se, but worth a
mention

- ® Helps keep track of “state” of the database

This sound too good...

® You're right!

How is the SQL
generated?

® |n ActiveRecord: all over the place

® Since can use multiple database adapters,

More on ActiveRecord

SQL

® Sometimes, ORM cannot do it all, e.g. a
complex sort

® Model.find by sq|

Other “Missing
Features™

Cursors: ActiveRecord either loads everything,
nothing, or in X batches

Datatypes and Modules: e.g. XML, hstore

Uniqueness / Constraint Errors: Treated as “SQL
Error

Shifting Gears:
SQLAIchemy

® uses ‘data mapper’” pattern

® separates SQL generation from actual
objects

® | will give more of an overview due to less-

[J A ~
Al] A [| 1O . AR ! 1

http://www.sqlalchemy.org/docs/05/ormtutorial.html
http://www.sqlalchemy.org/docs/05/ormtutorial.html
http://www.sqlalchemy.org/docs/05/ormtutorial.html
http://www.sqlalchemy.org/docs/05/ormtutorial.html

Noteworthy Points

® Separates SQL generation from mapper
itself (sounds familiar?)

Introducing
“Postgresina”

® So pre-alpha it’s (2

- Main idea: biiild on ()RM towAarc

ldeas

® Prepare / Execute - implicitly (hard) and
explicitly (easy[-ier])

® |nheritance - table-wise vs. string-column /
index and compare performance

Starting-Points

® SQL-generator:
st have solid APl

Idea: want to be
programmatic

Scalability

® VWant to remain programmatic and scale

Conclusions

® ORMs can help developers start-off quickly

® |ssues with scalability + taking advantage of
PostgreSQL features

Questions!

® Now

® jonathan.katz(@excoventures.com

mailto:jonathan.katz@excoventures.com
mailto:jonathan.katz@excoventures.com
mailto:jkatz05@gmail.com
mailto:jkatz05@gmail.com

